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SUMMARY

Elevated postprandial blood glucose levels consti-
tute a global epidemic and amajor risk factor for pre-
diabetes and type II diabetes, but existing dietary
methods for controlling them have limited efficacy.
Here, we continuously monitored week-long glucose
levels in an 800-person cohort, measured responses
to 46,898 meals, and found high variability in the
response to identical meals, suggesting that univer-
sal dietary recommendations may have limited
utility. We devised a machine-learning algorithm
that integrates blood parameters, dietary habits, an-
thropometrics, physical activity, and gut microbiota
measured in this cohort and showed that it accu-
rately predicts personalized postprandial glycemic
response to real-life meals. We validated these
predictions in an independent 100-person cohort.
Finally, a blinded randomized controlled dietary
intervention based on this algorithm resulted in
significantly lower postprandial responses and
consistent alterations to gut microbiota configura-
tion. Together, our results suggest that personalized
diets may successfully modify elevated postprandial
blood glucose and its metabolic consequences.

INTRODUCTION

Blood glucose levels are rapidly increasing in the population, as

evident by the sharp incline in the prevalence of prediabetes and

impaired glucose tolerance estimated to affect, in the U.S. alone,

37% of the adult population (Bansal, 2015). Prediabetes, charac-
C

terized by chronically impaired blood glucose responses, is a sig-

nificant risk factor for type II diabetes mellitus (TIIDM), with up to

70% of prediabetics eventually developing the disease (Nathan

et al., 2007). It is also linked to other manifestations, collectively

termed the metabolic syndrome, including obesity, hypertension,

non-alcoholic fatty liver disease,hypertriglyceridemia,andcardio-

vascular disease (Grundy, 2012). Thus, maintaining normal blood

glucose levels is considered critical for preventing and controlling

the metabolic syndrome (Riccardi and Rivellese, 2000).

Dietary intake is a central determinant of blood glucose levels,

and thus, in order to achieve normal glucose levels it is impera-

tive to make food choices that induce normal postprandial (post-

meal) glycemic responses (PPGR; Gallwitz, 2009). Postprandial

hyperglycemia is an independent risk factor for the development

of TIIDM (American Diabetes Association., 2015a), cardiovascu-

lar disease (Gallwitz, 2009), and liver cirrhosis (Nishida et al.,

2006) and is associated with obesity (Blaak et al., 2012), and

enhanced all-cause mortality in both TIIDM (Cavalot et al.,

2011) and cancer (Lamkin et al., 2009).

Despite their importance, no method exists for predicting

PPGRs to food. The current practice is to use the meal carbohy-

drate content (American Diabetes Association., 2015b; Bao

et al., 2011), even though it is a poor predictor of the PPGR

(Conn and Newburgh, 1936). Other methods aimed at estimating

PPGRs are the glycemic index, which quantifies PPGR to con-

sumption of a single tested food type, and the derived glycemic

load (Jenkins et al., 1981). It thus has limited applicability in as-

sessing the PPGR to real-life meals consisting of arbitrary food

combinations and varying quantities (Dodd et al., 2011),

consumed at different times of the day and at different proximity

to physical activity and other meals. Indeed, studies examining

the effect of diets with a low glycemic index on TIIDM risk, weight

loss, and cardiovascular risk factors yielded mixed results

(Greenwood et al., 2013; Kristo et al., 2013; Schwingshackl

and Hoffmann, 2013).
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Figure 1. Profiling of Postprandial Glycemic Responses, Clinical Data, and Gut Microbiome

(A) Illustration of our experimental design.

(B and C) Distribution of BMI and glycated hemoglobin (HbA1c%) in our cohort. Thresholds for overweight (BMI R 25 kg/m2), obese (BMI R 30 kg/m2),

prediabetes (HbA1c% R 5.7%) and TIIDM (R6.5%) are shown.

(legend continued on next page)
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Table 1. Cohorts Description

Main Cohort

Validation

Cohort

KS

p Value

Number of participants (n) 800 100

Sex (% female) 60% 60% 1

Age (y) Mean ± SD 43.3 ± 13.1 42.4 ± 12.6 0.972

BMI (kg/m^2) Mean ± SD 26.4 ± 5.1 26.5 ± 4.8 0.867

BMI R 25 428 (54%) 50 (50%)

BMI R 30 173 (22%) 18 (18%)

HbA1c% Mean ± SD 5.43 ± 0.45 5.50 ± 0.55 0.492

HbA1c% R 5.7 189 (24%) 31 (31%)

HbA1c% R 6.5 23 (3%) 3 (3%)

Total cholesterol

(non-fasting, mg/dl)

Mean ± SD

186.8 ± 37.5 182.7 ± 35.7 0.231

HDL cholesterol

(non-fasting, mg/dl)

Mean ± SD

59.0 ± 17.8 55.0 ± 16.1 0.371

Waist-to-hip

circumference

ratio Mean ± SD

0.83 ± 0.12 0.84 ± 0.07 0.818

KS - Kolmogorov-Smirnov test. See also Figure S1.
More broadly, ascribing a single PPGR to each food assumes

that the response is solely an intrinsic property of the consumed

food. However, the few small-scale (n = 23–40) studies that

examined interpersonal differences in PPGRs found high vari-

ability in the response of different people to the same food

(Vega-López et al., 2007; Vrolix and Mensink, 2010), but the fac-

tors underlying this variability have not been systematically

studied.

Factors that may affect interpersonal differences in PPGRs

include genetics (Carpenter et al., 2015), lifestyle (Dunstan

et al., 2012), insulin sensitivity (Himsworth, 1934), and exocrine

pancreatic and glucose transporters activity levels (Gibbs

et al., 1995). Another factor that may be involved is the gutmicro-

biota. Pioneering work by Jeffrey Gordon and colleagues previ-

ously showed that it associates with the propensity for obesity

and its complications, and later works also demonstrated asso-

ciations with glucose intolerance, TIIDM, hyperlipidemia, and in-

sulin resistance (Le Chatelier et al., 2013; Karlsson et al., 2013;

Qin et al., 2012; Suez et al., 2014; Turnbaugh et al., 2006; Zhang

et al., 2013). However, little is known about the association of gut

microbiota with PPGRs.

Here, we set out to quantitatively measure individualized

PPGRs, characterize their variability across people, and identify

factors associated with this variability. To this end, we continu-

ously monitored glucose levels during an entire week in a cohort

of 800 healthy and prediabetic individuals and also measured
(D) Example of continuous glucosemonitoring (CGM) for one participant during an

glucose curve (iAUC) which we use to quantify the meal’s PPGR.

(E) Major food components consumed by energy intake.

(F) Distribution of meals (dots) by macronutrient content. Inset shows histogram

(G) Bray-Curtis based PCoA of metagenome-based bacterial abundances of sto

Inset shows PCoA when samples from other HMP body sites are added. See als

C

blood parameters, anthropometrics, physical activity, and self-

reported lifestyle behaviors, as well as gut microbiota composi-

tionand function.Our resultsdemonstratehigh interpersonal vari-

ability in PPGRs to the same food.Wedevised amachine learning

algorithm that integrates thesemulti-dimensional data and accu-

rately predicts personalizedPPGRs,whichwe further validated in

an independently collected 100-person cohort. Moreover, we

show thatpersonally tailoreddietary interventionsbasedon these

predictions result in significantly improved PPGRs accompanied

by consistent alterations to the gut microbiota.

RESULTS

Measurements of Postprandial Responses, Clinical
Data, and Gut Microbiome
To comprehensively characterize PPGRs, we recruited 800

individuals aged 18–70 not previously diagnosed with TIIDM

(Figure 1A, Table 1). The cohort is representative of the adult

non-diabetic Israeli population (Israeli Center for Disease Con-

trol, 2014), with 54% overweight (BMI R 25 kg/m2) and 22%

obese (BMIR 30 kg/m2, Figures 1B, 1C, and S1). These proper-

ties are also characteristic of the Western adult non-diabetic

population (World Health Organization, 2008).

Each participant was connected to a continuous glucose

monitor (CGM), which measures interstitial fluid glucose every

5 min for 7 full days (the ‘‘connection week’’), using subcutane-

ous sensors (Figure 1D). CGMs estimate blood glucose levels

with high accuracy (Bailey et al., 2014) and previous studies

found no significant differences between PPGRs extracted

from CGMs and those obtained from either venous or capillary

blood (Vrolix and Mensink, 2010). We used blinded CGMs and

thus participants were unaware of their CGM levels during the

connection week. Together, we recorded over 1.5 million

glucose measurements from 5,435 days.

While connected to the CGM, participants were instructed to

log their activities in real-time, including food intake, exercise

and sleep, using a smartphone-adjusted website (www.

personalnutrition.org) that we developed (Figure S2A). Each

food item within every meal was logged along with its weight

by selecting it from a database of 6,401 foods with full nutritional

values based on the Israeli Ministry of Health database that we

further improved and expanded with additional items from certi-

fied sources. To increase compliance, participants were

informed that accurate logging is crucial for them to receive an

accurate analysis of their PPGRs to food (ultimately provided

to each of them). During the connection week, participants

were asked to follow their normal daily routine and dietary habits,

except for the first meal of every day, which we provided as one

of four different types of standardized meals, each consisting of

50 g of available carbohydrates. This resulted in a total of 46,898

real-lifemeals with close-to or full nutritional values (median of 54
entire week. Colored areawithin zoom-in shows the incremental area under the

of meals per macronutrient.

ol samples in our cohort and in the U.S. HMP and European MetaHIT cohorts.

o Figure S2.
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Figure 2. High Interpersonal Variability in the Postprandial Glycemic Response to the Same Meal

(A) PPGRs associatewith risk factors. Shown are PPGRs, BMI, HbA1c%, age, andwakeup glucose of all participants, sorted bymedian standardizedmeal PPGR

(top, red dots). Correlation of factors with the median PPGRs to standardized meals is shown along with a moving average line.

(legend continued on next page)
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meals per participant) and 5,107 standardized meals. The PPGR

of each meal was calculated by combining reported meal time

with CGM data and computing the incremental area under the

glucose curve in the 2 hr after the meal (iAUC; Wolever and Jen-

kins, 1986; Figure 1D).

Prior to CGM connection, a comprehensive profile was

collected from each participant, including: food frequency, life-

style, and medical background questionnaires; anthropometric

measures (e.g., height, hip circumference); a panel of blood

tests; and a single stool sample, used for microbiota profiling

by both 16S rRNA and metagenomic sequencing.

With a total of�10,000,000 Calories logged, our data provide a

global view into the cohort’s dietary habits, showing the fraction

that each food source contributes to the cohort’s overall energy

intake (e.g., dairy, 7%; sweets, 6%; Figure 1E), andmacronutrient

intake (Figures S2B–S2D). Analysis of the caloric breakdown of

every meal by macronutrients revealed that protein intake varies

relatively little across meals (80% of meals have 5%–35% pro-

tein), while fat and carbohydrates have a wide and bimodal distri-

bution,whereoneof themodescorresponds to fat-freemealsand

constitutes 18% of all meals (Figure 1F).

Principal coordinates analysis (PCoA) on the Bray-Curtis

dissimilarity between metagenome-based relative abundances

(RA) revealed a similar degree of variability in the microbiomes

of our cohort and stool samples of the US HMP (Human Micro-

biome Project Consortium, 2012) and European MetaHIT (Niel-

sen et al., 2014) cohorts (Figure 1G). The first two principal coor-

dinates show some distinction between our cohort and the other

cohorts, but when HMP samples from other body sites are

added to the PCoA, stool samples from all three cohorts cluster

together and separate from the rest, indicative of overall similar-

ity in the gut microbiota composition of individuals from these

three distinct geographical regions (Figure 1G).

Postprandial Glycemic Responses Associate with
Multiple Risk Factors
Our data replicate known associations of PPGRs with risk fac-

tors, as the median standardized meal PPGR was significantly

correlated with several known risk factors including BMI (R =

0.24, p < 10�10), glycated hemoglobin (HbA1c%, R = 0.49, p <

10�10), wakeup glucose (R = 0.47, p < 10�10), and age (R =

0.42, p < 10�10, Figure 2A). These associations are not confined

to extreme values but persist along the entire range of PPGR

values, suggesting that the reduction in levels of risk factors is

continuous across all postprandial values, with lower values

associatedwith lower levels of risk factors evenwithin the normal

value ranges (Figure 2A).
(B) Kernel density estimation (KDE) smoothed histogram of the PPGR to four typ

carbohydrates). Dashed lines represent histogram modes (See also Figure S3).

(C) Example of high interpersonal variability and low intra-personal variability in

consumed on two different mornings).

(D) Heatmap of PPGR (average of two replicates) of participants (rows) to three ty

each participant’s relative rankings of the three meal types.

(E) Example of two replicates of the PPGR to two standardized meals for two pa

(F) Box plot (box, IQR; whiskers, 10–90 percentiles) of the PPGR to different real-

(G) Same as (E), for a pair of real-life meals, each containing 20 g of carbohydra

(H) Heatmap (subset) of statistically significant associations (p < 0.05, FDR correct

and microbiome data (See also Figure S4 for the full heatmap).

C

Utilizing the continuous nature of the CGMs,we also examined

the association between risk factors and the glucose level of

each participant at different percentiles (0–100) with respect

to all glucose measurements from the connection week. These

levels are affected by the PPGRswhile also reflecting the general

glycemic control state of the participant. All percentiles signifi-

cantly associated with risk factors (wakeup glucose, BMI,

HbA1c%, and age; Figures S3A–S3D). The percentile at which

the glucose level correlation was highest varied across risk fac-

tors. For example, BMI had the highest correlation with the 40th

glucose value percentile, whereas for HbA1c%percentile 95 had

the highest correlation (Figures S3A and S3C). These results

suggest that the entire range of glucose levels of an individual

may have clinical relevance, with different percentiles being

more relevant for particular risk factors.

High Interpersonal Variability in the Postprandial
Response to Identical Meals
Next, we examined intra- and interpersonal variability in the

PPGR to the same food. First, we assessed the extent to which

PPGRs to three types of standardized meals that were given

twice to every participant (Figure 1A), are reproducible within

the same person. Indeed, the two replicates showed high agree-

ment (R = 0.77 for glucose, R = 0.77 for bread with butter, R =

0.71 for bread, p < 10�10 in all cases), demonstrating that the

PPGR to identical meals is reproducible within the same person

and that our experimental system reliably measures this repro-

ducibility. However, when comparing the PPGRs of different

people to the same meal, we found high interpersonal variability,

with the PPGRs of every meal type (except fructose) spanning

the entire range of PPGRs measured in our cohort (Figures 2B,

2C, and S3E–S3H). For example, the average PPGR to bread

across 795 people was 44 ± 31 mg/dl*h (mean ± SD), with the

bottom 10% of participants exhibiting an average PPGR below

15mg/dl*h and the top 10%of participants exhibiting an average

PPGR above 79 mg/dl*h. The large interpersonal differences in

PPGRs are also evident in that the type of meal that induced

the highest PPGR differs across participants and that different

participants might have opposite PPGRs to pairs of different

standardized meals (Figures 2D and 2E).

Interpersonal variability was not merely a result of participants

having high PPGRs to all meals, since high variability was also

observed when the PPGR of each participant was normalized to

his/her own PPGR to glucose (Figures S3I–S3K). For white bread

and fructose, for which such normalized PPGRs were previously

measured, the mode of the PPGR distribution in our cohort had

excellent agreement with published values (Foster-Powell et al.,
es of standardized meals provided to participants (each with 50 g of available

the PPGR to bread across four participants (two replicates per participant

pes of standardized meals (columns) consumed in replicates. Clustering is by

rticipants exhibiting reproducible yet opposite PPGRs.

life meals along with amount of carbohydrates consumed (green; mean ± std).

tes.

ed) between participants’ standardized meals PPGRs and participants’ clinical
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2002), further validating theaccuracyof our data (bread: 65 versus

71; fructose: 15 versus 19, Figures S3I and S3K).

Next, we examined variability in the PPGRs to the multiple

real-life meals reported by our participants. Since real-life meals

vary in amounts and may each contain several different food

components, we only examined meals that contained 20–40 g

of carbohydrates and had a single dominant food component

whose carbohydrate content exceeded 50% of the meal’s car-

bohydrate content. We then ranked the resulting dominant foods

that had at least 20 meal instances by their population-average

PPGR (Figure 2F). For foods with a published glycemic index,

our population-average PPGRs agreed with published values

(R = 0.69, p < 0.0005), further supporting our data (Table S1).

For example, the average PPGR to rice and potatoes was

relatively high, whereas that for ice cream, beer, and dark

chocolate was relatively low, in agreement with published data

(Atkinson et al., 2008; Foster-Powell et al., 2002). Similar to stan-

dardized meals, PPGRs to self-reported meals highly varied

across individuals, with both low and high responders noted

for each type of meal (Figures 2F and 2G).

Postprandial Variability Is Associated with Clinical and
Microbiome Profiles
We found multiple significant associations between the stan-

dardized meal PPGRs of participants and both their clinical and

gut microbiome data (Figures 2H and S4). Notably, the TIIDM

and metabolic syndrome risk factors HbA1c%, BMI, systolic

blood pressure, and alanine aminotransferase (ALT) activity are

all positively associated with PPGRs to all types of standardized

meals, reinforcing themedical relevance of PPGRs. Inmost stan-

dardized meals, PPGRs also exhibit a positive correlation with

CRP, whose levels rise in response to inflammation (Figure 2H).

With respect to microbiome features, the phylogenetically

related Proteobacteria and Enterobacteriaceae both exhibit pos-

itive associations with a few of the standardized meals PPGR

(Figure 2H). These taxa have reported associations with poor

glycemic control, and with components of the metabolic syn-

drome including obesity, insulin resistance, and impaired lipid

profile (Xiao et al., 2014). RAs of Actinobacteria are positively

associated with the PPGR to both glucose and bread, which is

intriguing since high levels of this phylum were reported to asso-

ciate with a high-fat, low-fiber diet (Wu et al., 2011).

At the functional level, the KEGG pathways of bacterial

chemotaxis and of flagellar assembly, reported to increase

in mice fed high-fat diets and decrease upon prebiotics adminis-

tration (Everard et al., 2014), exhibit positive associations

with several standardized meal PPGRs (Figure 2H). The KEGG

pathway of ABC transporters, reported to be positively associ-

ated with TIIDM (Karlsson et al., 2013) and with a Western

high-fat/high-sugar diet (Turnbaugh et al., 2009), also exhibits

positive association with several standardized meal PPGRs (Fig-

ure 2H). Several bacterial secretion systems, including both type

II and type III secretion systems that are instrumental in bacterial

infection and quorum sensing (Sandkvist, 2001) are positively

associated with most standardized meal PPGRs (Figure 2H).

Finally, KEGG modules for transport of the positively charged

amino acids lysine and arginine are associated with high PPGR

to standardized foods, while transport of the negatively charged
1084 Cell 163, 1079–1094, November 19, 2015 ª2015 Elsevier Inc.
amino acid glutamate is associated with low PPGRs to these

foods.

Taken together, these results show that PPGRs vary greatly

across different people and associate with multiple person-spe-

cific clinical and microbiome factors.

Prediction of Personalized Postprandial Glycemic
Responses
We next askedwhether clinical andmicrobiome factors could be

integrated into an algorithm that predicts individualized PPGRs.

To this end, we employed a two-phase approach. In the first,

discovery phase, the algorithm was developed on the main

cohort of 800 participants, and performance was evaluated us-

ing a standard leave-one-out cross validation scheme, whereby

PPGRs of each participant were predicted using a model trained

on the data of all other participants. In the second, validation

phase, an independent cohort of 100 participants was recruited

and profiled, and their PPGRs were predicted using the model

trained only on the main cohort (Figure 3A).

Given non-linear relationships between PPGRs and the

different factors, we devised a model based on gradient boost-

ing regression (Friedman, 2001). This model predicts PPGRs us-

ing the sum of thousands of different decision trees. Trees are

inferred sequentially, with each tree trained on the residual of

all previous trees and making a small contribution to the overall

prediction (Figure 3A). The features within each tree are selected

by an inference procedure from a pool of 137 features represent-

ing meal content (e.g., energy, macronutrients, micronutrients);

daily activity (e.g., meals, exercises, sleep times); blood param-

eters (e.g., HbA1c%, HDL cholesterol); CGM-derived features;

questionnaires; and microbiome features (16S rRNA and meta-

genomic RAs, KEGG pathway and module RAs and bacterial

growth dynamics - PTRs; Korem et al., 2015).

As a baseline reference, we used the ‘‘carbohydrate counting’’

model, as it is the current gold standard for predicting PPGRs

(American Diabetes Association., 2015b; Bao et al., 2011). On

our data, this model that consists of a single explanatory variable

representing the meal’s carbohydrate amount achieves a

modest yet statistically significant correlation with PPGRs (R =

0.38, p < 10�10, Figure 3B). A model using only meal Caloric

content performsworse (R = 0.33, p < 10�10, Figure 3C). Our pre-

dictor that integrates the above person-specific factors predicts

the held-out PPGRs of individuals with a significantly higher cor-

relation (R = 0.68, p < 10�10, Figure 3D). This correlation ap-

proaches the presumed upper bound limit set by the 0.71–0.77

correlation that we observed between the PPGR of the same

person to two replicates of the same standardized meal.

Validation of Personalized Postprandial Glycemic
Response Predictions on an Independent Cohort
We further validated our model on an independent cohort of 100

individuals that we recruited separately. Data from this additional

cohort were not available to us while developing the algorithm.

Participants in this cohort underwent the same profiling as in

the main 800-person cohort. No significant differences were

found between the main and validation cohorts in key parame-

ters, including age, BMI, non-fasting total and HDL cholesterol,

and HbA1c% (Table 1, Figure S1).
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Figure 3. Accurate Predictions of Personal-

ized Postprandial Glycemic Responses

(A) Illustration of our machine-learning scheme for

predicting PPGRs.

(B–E) PPGR predictions. Dots represent predicted

(x axis) and CGM-measured PPGR (y axis) for

meals, for a model based: only on the meal’s car-

bohydrate content (B); only on the meal’s Caloric

content (C); our predictor evaluated in leave-one-

person-out cross validation on the main 800-per-

son cohort (D); and our predictor evaluated on the

independent 100-person validation cohort (E).

Pearson correlation of predicted and measured

PPGRs is indicated.
Notably, our algorithm, derived solely using the main 800 par-

ticipants cohort, achieved similar performance on the 100 partic-

ipants of the validation cohort (R = 0.68 and R = 0.70 on the main

and validation cohorts, respectively, Figures 3D and 3E). The

reference carbohydrate counting model achieved the same per-

formance as in themain cohort (R = 0.38). This result further sup-

ports the ability of our algorithm to provide personalized PPGR

predictions.

Factors Underlying Personalized Predictions
To gain insight into the contribution of the different features in

the algorithm’s predictions, we examined partial dependence

plots (PDP), commonly used to study functional relations be-

tween features used in predictors such as our gradient boosting

regressor and an outcome (PPGRs in our case; Hastie et al.,

2008). PDPs graphically visualize the marginal effect of a given

feature on prediction outcome after accounting for the average

effect of all other features. While this effect may be indicative of

feature importance, it may also be misleading due to higher-or-

der interactions (Hastie et al., 2008). Nonetheless, PDPs are

commonly used for knowledge discovery in large datasets

such as ours.
Cell 163, 1079–1094, No
As expected, the PDP of carbohydrates

(Figure 4A) shows that as the meal carbo-

hydrate content increases, our algorithm

predicts, on average, a higher PPGR. We

term this relation, of higher predicted

PPGR with increasing feature value, as

non-beneficial (with respect to prediction),

and the opposite relation, of lower pre-

dicted PPGR with increasing feature

value, as beneficial (also with respect to

prediction; see PDP legend in Figure 4).

However, since PDPs display the overall

contribution of each feature across the

entire cohort, we asked whether the rela-

tionship between carbohydrate amount

and PPGRs varies across people. To this

end, for each participant we computed

the slope of the linear regression between

the PPGR and carbohydrate amount of all

his/hermeals. As expected, this slopewas
positive for nearly all (95.1%) participants, reflective of higher

PPGRs in meals richer in carbohydrates. However, the magni-

tude of this slope varies greatly across the cohort, with the

PPGR of some people correlating well with the carbohydrate

content (i.e., carbohydrates ‘‘sensitive’’) and that of others exhib-

iting equally high PPGRs but little relationship to the amount

of carbohydrates (carbohydrate ‘‘insensitive’’; Figure 4B). This

result suggests that carbohydrate sensitivity is also person

specific.

The PDP of fat exhibits a beneficial effect for fat since our al-

gorithm predicts, on average, lower PPGR as the meal’s ratio

of fat to carbohydrates (Figure 4C) or total fat content (Fig-

ure S5A) increases, consistent with studies showing that adding

fat to meals may reduce the PPGR (Cunningham and Read,

1989). However, here too, we found that the effect of fat varies

across people. We compared the explanatory power of a linear

regression between each participant’s PPGR andmeal carbohy-

drates, with that of regression using both fat and carbohydrates.

We then used the difference in Pearson R between the two

models as a quantitative measure of the added contribution of

fat (Figure 4D). For some participants we observed a reduction

in PPGR with the addition of fat, while for others meal fat content
vember 19, 2015 ª2015 Elsevier Inc. 1085
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Figure 4. Factors Underlying the Prediction

of Postprandial Glycemic Responses

(A) Partial dependence plot (PDP) showing the

marginal contribution of the meal’s carbohydrate

content to the predicted PPGR (y axis, arbitrary

units) at each amount of meal carbohydrates

(x axis). Red and green indicate above and below

zero contributions, respectively (number indicate

meals). Boxplots (bottom) indicate the carbohy-

drates content at which different percentiles (10,

25, 50, 75, and 90) of the distribution of all meals

across the cohort are located. See PDP legend.

(B) Histogram of the slope (computed per partici-

pant) of a linear regression between the carbohy-

drate content and the PPGR of all meals. Also

shown is an example of one participant with a low

slope and another with a high slope.

(C) Meal fat/carbohydrate ratio PDP.

(D) Histogram of the difference (computed per

participant) between the Pearson R correlation of

two linear regression models, one between the

PPGR and the meal carbohydrate content and

another when adding fat and carbohydrate*fat

content. Also shown is an example of the carbo-

hydrate and fat content of all meals of one partici-

pant with a relatively low R difference (carb alone

correlates well with PPGR) and another with a

relatively high difference (meals with high fat

content have lower PPGRs). Dot color and size

correspond to the meal’s PPGR.

(E) Additional PDPs.

(F) Microbiome PDPs. The number of participants

in which the microbiome feature was not detected

is indicated (left, n.d.). Boxplots (box, IQR; whiskers

10–90 percentiles) based only on detected values.

(G) Heatmap of statistically significant correlations

(Pearson) between microbiome features termed

beneficial (green) or non-beneficial (red) and

several risk factors and glucose parameters.

See also Figure S5.
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did not add much to the explanatory power of the regressor

based only on the meal’s carbohydrates content (Figure 4D).

Interestingly, while dietary fibers in the meal increase the pre-

dicted PPGR, their long-term effect is beneficial as higher

amount of fibers consumed in the 24 hr prior to the meal reduces

the predicted PPGR (Figure 4E). The meal’s sodium content, the

time that passed since last sleeping, and a person’s cholesterol

levels or age all exhibit non-beneficial PDPs, while the PDPs of

the meal’s alcohol and water content display beneficial effects

(Figures 4E and S5A). As expected, the PDP of HbA1c% shows

a non-beneficial effect with increased PPGR at higher HbA1c%

values; intriguingly, higher PPGRs are predicted, on average, for

individuals with HbA1c% above �5.5%, which is very close to

the prediabetes threshold of 5.7% (Figure S5A).

The 72 PDPs of the microbiome-based features used in our

predictor were either beneficial (21 factors), non-beneficial (28),

or non-decisive (23) in that they mostly decreased, increased,

or neither, as a function of the microbiome feature. The resulting

PDPs had several intriguing trends. For example, growth of Eu-

bacterium rectale was mostly beneficial, as in 430 participants

with high inferred growth for E. rectale it associates with a lower

PPGR (Figure 4F). Notably, E. rectale can ferment dietary carbo-

hydrates and fibers to produce metabolites useful to the host

(Duncan et al., 2007), and was associated with improved post-

prandial glycemic and insulinemic responses (Martı́nez et al.,

2013), as well as negatively associated with TIIDM (Qin et al.,

2012). RAs of Parabacteroides distasonis were found non-bene-

ficial by our predictor (Figure 4F) and this species was also sug-

gested to have a positive association with obesity (Ridaura et al.,

2013). As another example, the KEGG module of cell-division

transport system (M00256) was non-beneficial, and in the 164

participants with the highest levels for it, it associates with a

higher PPGR (Figure 4F). Bacteroides thetaiotaomicron was

non-beneficial (Figure S5B), and it was associated with obesity

and was suggested to have increased capacity for energy har-

vest (Turnbaugh et al., 2006). In the case of Alistipes putredinis

and the Bacteroidetes phylum, the non-beneficial classification

that our predictor assigns to both of them is inconsistent with

previous studies that found them to be negatively associated

with obesity (Ridaura et al., 2013; Turnbaugh et al., 2006). This

may reflect limitations of the PDP analysis or result from a

more complex relationship between these features, obesity,

and PPGRs.

To assess the clinical relevance of the microbiome-based

PDPs, we computed the correlation between several risk factors

and overall glucose parameters, and the factors with beneficial

and non-beneficial PDPs across the entire 800-person cohort.

We found 20 statistically significant correlations (p < 0.05, FDR

corrected) where microbiome factors termed non-beneficial

correlated with risk factors, and those termed beneficial ex-

hibited an anti-correlation (Figure 4G). For example, higher levels

of the beneficial methionine degradation KEGG module

(M00035) resulted in lower PPGRs in our algorithm, and across

the cohort, this module anti-correlates with systolic blood pres-

sure and with BMI (Figure 4G). Similarly, fluctuations in glucose

levels across the connectionweek correlates with nitrate respira-

tion two-component regulatory system (M00472) and with lacto-

sylceramide biosynthesis (M00066), which were both termed
C

non-beneficial. Glucose fluctuations also anti-correlate with

levels of the tetrathionate respiration two-component regulatory

system (M00514) and with RAs of Alistipes finegoldii, both

termed beneficial (Figure 4G). In 14 other cases, factors with

beneficial or non-beneficial PDPs were correlated and anti-

correlated with risk factors, respectively.

These results suggest that PPGRs are associated with

multiple and diverse factors, including factors unrelated to

meal content.

Personally Tailored Dietary Interventions Improve
Postprandial Responses
Next, we asked whether personally tailored dietary interventions

based on our algorithm could improve PPGRs. We designed a

two-arm blinded randomized controlled trial and recruited 26

new participants. A clinical dietitian met each participant and

compiled 4–6 distinct isocaloric options for each type of meal

(breakfast, lunch, dinner, and up to two intermediate meals), ac-

commodating the participant’s regular diet, eating preferences,

and dietary constraints. Participants then underwent the same

1-week profiling of our main 800-person cohort (except that

they consumed the meals compiled by the dietitian), thus

providing the inputs (microbiome, blood parameters, CGM,

etc.) that our algorithm needs for predicting their PPGRs.

Participants were then blindly assigned to one of two arms

(Figure 5A). In the first, ‘‘prediction arm,’’ we applied our algo-

rithm in a leave-one-out scheme to rank every meal of each

participant in the profiling week (i.e., the PPGR to each predicted

meal was hidden from the predictor). We then used these rank-

ings to design two 1-week diets: (1) a diet composed of the

meals predicted by the algorithm to have low PPGRs (the

‘‘good’’ diet); and (2) a diet composed of the meals with high pre-

dicted PPGRs (the ‘‘bad’’ diet). Every participant then followed

each of the two diets for a full week, during which they were con-

nected to a CGM and a daily stool sample was collected

(if available). The order of the 2 diet weeks was randomized

for each participant and the identity of the intervention weeks

(i.e., whether they are ‘‘good’’ or ‘‘bad’’) was kept blinded from

CRAs, dietitians and participants.

The second, ‘‘expert arm,’’ was used as a gold standard for

comparison. Participants in this arm underwent the same

process as the prediction arm except that instead of using our

predictor for selecting their ‘‘good’’ and ‘‘bad’’ diets a clinical

dietitian and a researcher experienced in analyzing CGM data

(collectively termed ‘‘expert’’) selected them based on their

measured PPGRs to all meals during the profiling week. Specif-

ically, meals that according to the expert’s analysis of their CGM

had low and high PPGRs in the profiling week were selected

for the ‘‘good’’ and ‘‘bad’’ diets, respectively. Thus, to the

extent that PPGRs are reproducible within the same person,

this expert-based arm should result in the largest differences

between the ‘‘good’’ and ‘‘bad’’ diets because the selection of

meals in the intervention weeks is based on their CGM data.

Notably, for 10 of the 12 participants of the predictor-based

arm, PPGRs in the ‘‘bad’’ diet were significantly higher than in

the ‘‘good’’ diet (p < 0.05, Figure 5C). Differences between the

two diets are also evident in fewer glucose spikes and fewer

fluctuations in the raw week-long CGM data (Figure 5B). The
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Figure 5. Personally Tailored Dietary Interventions Improve Postprandial Glycemic Responses

(A) Illustration of the experimental design of our two-arm blinded randomized controlled trial.

(B) Continuous glucose measurements of one participant from the expert arm (top) and another from the predictor arm (bottom) across their ‘‘good’’ (green) and

‘‘bad’’ (red) diet weeks.

(C) Boxplot of meal PPGRs during the ‘‘bad’’ (red) and ‘‘good’’ (green) diet weeks for participants in both the predictor (left) and expert (right) arms. Statistical

significance is marked (Mann-Whitney U-test, ***p < 0.001, **p < 0.01, *p < 0.05, y p < 0.1, n.s. not significant).

(D) As in (C), but for a grouping of all meals of all participants in each study arm (p, Wilcoxon signed-rank test).

(E) Boxplot of the blood glucose fluctuations (noise) of participants in both the ‘‘bad’’ (red) and ‘‘good’’ (green) diet weeks for both study arms. Blood glucose

fluctuations per participant are defined as the ratio between the standard deviation and mean of his/her weeklong blood glucose levels (p, Wilcoxon signed-

rank test).

(F) As in (E), but for the maximum PPGR of each participant.

(G) Subset of dominant food components prescribed in the ‘‘good’’ (green) diet of some participants and in the ‘‘bad’’ (red) diet of other participants. See also

Figure S6 for the full matrix.

(H) Dot plot between the CGM-measured PPGR of meals during the profiling week (x axis) and the average CGM-measured PPGR of the same meals during the

dietary intervention weeks (y axis). Meals of all participants in both study arms are shown.

(I) As in (H), but when PPGRs in the dietary intervention weeks are predicted by our predictor using only the first profiling week data of each participant.

Boxplots - box, IQR; whiskers 1.5*IQR.
success of the predictor was comparable to that of the expert-

based arm, in which significantly lower PPGRs in the ‘‘good’’

versus the ‘‘bad’’ diet were observed for 8 of its 14 participants

(p < 0.05, 11 of 14 participants with p < 0.1, Figure 5C).
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When combining the data across all participants, the ‘‘good’’

diet exhibited significantly lower PPGRs than the ‘‘bad’’ diet

(p < 0.05, Figure 5D) as well as improvement in other measures

of blood glucose metabolism in both study arms, specifically,



lower fluctuations in glucose levels across the CGM connection

week (p < 0.05, Figure 5E), and a lower maximal PPGR (p < 0.05,

Figure 5F) in the ‘‘good’’ diet.

Both study arms constitute personalized nutritional interven-

tions and thus demonstrate the efficacy of this approach in

lowering PPGRs. However, the predictor-based approach has

broader applicability since it can predict PPGRs to arbitrary un-

seen meals, whereas the ‘‘expert’’-based approach will always

require CGM measurements of the meals it prescribes.

Post hoc examination of the prescribed diets revealed the

personalized aspect of the diets in both arms in that multiple

dominant food components (as in Figure 2F) prescribed in the

‘‘good’’ diet of some participants were prescribed in the ‘‘bad’’

diet of others (Figures 5G and S6). This occurs when compo-

nents induced opposite CGM-measured PPGRs across partici-

pants (expert arm) or were predicted to have opposite PPGRs

(predictor arm).

The correlation between the measured PPGR of meals during

the profiling week and the average CGM-measured PPGR of the

same meals during the dietary intervention was 0.70 (Figure 5H),

which is similar to the reproducibility observed for standardized

meals (R = 0.71–0.77). Thus, as in the case of standardizedmeals,

a meal’s PPGR during the profiling week was not identical to its

PPGR in thedietary interventionweek.Notably, usingonly the first

profiling week data of each participant, our algorithm predicted

the average PPGRs of meals in the dietary intervention weeks

with an even higher correlation (R = 0.80, Figure 5I). Since our pre-

dictor also incorporates context-specific factors (e.g., previous

meal content, time since sleep), this result also suggests that

such factors may be important determinants of PPGRs.

Taken together, these results show the utility of personally

tailored dietary interventions for improving PPGRs in a short-

term intervention period, and the ability of our algorithm to devise

such interventions.

Alterations in Gut Microbiota Following Personally
Tailored Dietary Interventions
Finally, we used the daily microbiome samples collected during

the intervention weeks to ask whether the interventions induced

significant changes in the gut microbiota. Previous studies

showed that even short-term dietary interventions of several

days may significantly alter the gut microbiota (David et al.,

2014; Korem et al., 2015).

We detected changes following the dietary interventions that

were significant relative to a null hypothesis of no change derived

from the first week, in which there was no intervention, across all

participants (Figures 6A and 6B). While many of these significant

changes were person-specific, several taxa changed consis-

tently in most participants (p < 0.05, FDR corrected, Figure 6C

and S7). Moreover, in most cases in which the consistently

changing taxa had reported associations in the literature, the

direction of change in RA following the ‘‘good’’ diet was in agree-

ment with reported beneficial associations. For example, Bifido-

bacterium adolescentis, for which low levels were reported to be

associated with greater weight loss (Santacruz et al., 2009),

generally decrease in RA following the ‘‘good’’ diet and increase

following the ‘‘bad’’ diet (Figure 6C,D). Similarly, TIIDM has been

associated with low levels of Roseburia inulinivorans (Qin et al.,
C

2012; Figure 6E), Eubacterium eligens (Karlsson et al., 2013),

and Bacteroides vulgatus (Ridaura et al., 2013), and all these

bacteria increase following the ‘‘good’’ diet and decrease

following the ‘‘bad’’ diet (Figure 6C). The Bacteroidetes phylum,

for which low levels associate with obesity and high fasting

glucose (Turnbaugh et al., 2009), increases following the

‘‘good’’ diet and decreases following the ‘‘bad’’ diet (Figure 6C).

Low levels of Anaerostipes associate with improved glucose

tolerance and reduced plasma triglyceride levels in mice (Ever-

ard et al., 2011) and indeed these bacteria decrease following

the ‘‘good’’ diet and increase following the ‘‘bad’’ diet (Figure 6C).

Finally, low levels of Alistipes putredinis associate with obesity

(Ridaura et al., 2013) and this bacteria increased following the

‘‘good’’ diet (Figure 6C).

These findings demonstrate that while both baseline micro-

biota composition and personalized dietary intervention vary be-

tween individuals, several consistent microbial changes may be

induced by dietary intervention with a consistent effect on PPGR.

DISCUSSION

In this work we measured 46,898 PPGRs to meals in a popula-

tion-based cohort of 800 participants. We demonstrate that

PPGRs are highly variable across individuals even when they

consume the same standardized meals. We further show that

an algorithm that integrates clinical and microbiome features

can accurately predict personalized PPGRs to complex, real-

life meals even in a second independently collected validation

cohort of 100 participants. Finally, personalized dietary interven-

tions based on this algorithm induced lower PPGRs and were

accompanied by consistent gut microbiota alterations.

Our study focused on PPGRs, as they were shown to be

important in achieving proper glycemic control, and when

disturbed are considered an independent disease risk factor

(American Diabetes Association., 2015a; Gallwitz, 2009). PPGRs

in our study also associated with several risk factors, including

BMI, HbA1c%, and wakeup glucose. In addition to its centrality

in glucose homeostasis, PPGRs serves as a convenient and ac-

curate endpoint, enabling continuous ‘‘point-of-care’’ collection

of dozens of quantitative measurements per person during a

relatively short follow up period. Such continuous assessment

of PPGRs is complementary to other equally important clinical

parameters such as BMI and HbA1c%, for which changes typi-

cally occur over longer timescales and are thus difficult to corre-

late to nutritional responses in real time.

In line with few small-scale studies that previously examined

individual PPGRs (Vega-López et al., 2007; Vrolix and Mensink,

2010), we demonstrate on 800 individuals that the PPGR of

different people to the same food can greatly vary. The most

compelling evidence for this observation is the controlled setting

of standardized meals, provided to all participants in replicates.

This high interpersonal variability suggests that at least with re-

gard to PPGRs, approaches that grade dietary ingredients as

universally ‘‘good’’ or ‘‘bad’’ based on their average PPGR in

the population may have limited utility for an individual.

We report several associations between microbiome features

and variability in PPGRs across people. In some cases, such as

for Actinobacteria, Proteobacteria, and Enterobacteriaceae, the
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Figure 6. Dietary Interventions Induce Consistent Alterations to the Gut Microbiota Composition

(A) Top: Continuous glucose measurements of a participant from the expert arm for both the ‘‘bad’’ diet (left) and ‘‘good’’ diet (right) week. Bottom: Fold change

between the relative abundance (RA) of taxa in each day of the ‘‘bad’’ (left) or ‘‘good’’ (right) weeks and days 0–3 of the sameweek. Shown are only taxa that exhibit

statistically significant changes with respect to a null hypothesis of no change derived from changes in the first profiling week (no intervention) of all participants.

(B) As in (A) for a participant from the predictor arm. See also Figure S7 for changes in all participants.

(C) Heatmap of taxa with opposite trends of change in RA between ‘‘good’’ and ‘‘bad’’ intervention weeks that was consistent across participant and statistically

significant (Mann-Whitney U-test between changes in the ‘‘good’’ and ‘‘bad’’ weeks, p < 0.05, FDR corrected). Left and right column blocks shows bacteria

increasing and decreasing in their RA following the ‘‘good’’ diet, respectively, and conversely for the ‘‘bad’’ diet. Colored entries represent the (log) fold change

between the RA of a taxon (x axis) between days 4–7 and 0–3 within each participant (y axis). Asterisks indicate a statistically significant fold change.

See also Figure S7 for all changes.

(legend continued on next page)
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direction of our associations are consistent with previous asso-

ciations reported between these taxa and higher-level pheno-

types such as dietary habits, obesity and overall glycemic

control (Wu et al., 2011; Xiao et al., 2014), raising testable hy-

potheses about how these taxa may mediate these host meta-

bolic effects. However, in most other cases we identify yet un-

known associations with particular biosynthesis pathways or

transport and secretion systems, which may be contributed by

different taxa in different individuals. These correlations thus pro-

vide concrete new pointers for further mechanistic research,

aimed at establishing causal roles for these bacterial taxa and

functional pathways in determining PPGRs.

Our study further attempts to analyze real-life meals that are

consumed in complex food combinations, at different times of

the day, and in varying proximity to previous meals, physical ac-

tivity, and sleep. While clearly of higher translational relevance,

the use of ‘‘real-life’’ nutritional input also introduces noise into

the meal composition data. Despite that, our results show that

predictions for such meals can be made informative by inte-

grating data from a large cohort into a carefully structured pre-

dictor. Even better predictions can likely be achieved with further

research.

Our algorithm takes as input a comprehensive clinical and mi-

crobiome profile and employs a data-driven unbiased approach

to infer the major factors that are predictive of PPGRs. Intro-

specting the resulting algorithm shows that its predictions inte-

grate multiple diverse features that are unrelated to the content

of the meal itself. These include contents of previous meals,

time since sleep, proximity to exercise, and several micro-

biome-based factors. With respect to microbiome factors, our

algorithm identifies multiple functional pathways and bacterial

taxa as either beneficial or non-beneficial, such that in partici-

pants with increasing levels for these factors the algorithm pre-

dicts a lower or higher PPGR, respectively. In many such cases,

microbiome factors found to be beneficial with respect to PPGRs

are also negatively associated with risk factors such as HbA1c%

and cholesterol levels.

Dietary interventions based on our predictor showed signifi-

cant improvements in multiple aspects of glucose metabolism,

including lower PPGRs and lower fluctuations in blood glucose

levels within a short 1-week intervention period. It will be inter-

esting to evaluate the utility of such personalized intervention

over prolonged periods of several months and even years. If suc-

cessful, prolonged individualized dietary control of the PPGR

may be useful in controlling, ameliorating, or preventing a set

of disorders associated with chronically impaired glucose con-

trol, including obesity, prediabetes, TIIDM, and non-alcoholic

fatty liver disease (Grundy, 2012). These intriguing possibilities,

and the microbiome changes that accompany them, merit

further studies. Of equal interest and importance, our individual-

ized nutritional study protocols may be applicable to address

other clinically relevant issues involving nutritional modifications,
(D) For Bifidobacterium adolescentis, which decreased significantly following th

deviation of the (log) fold change of all participants in each day of the ‘‘good’’ (top) d

(bottom) in which B. adolescentis increases significantly (see panel C). Grey lines

(E) As in (D), for Roseburia inulinivorans.

C

such as TIIDM and TIDM patient-specific determination of medi-

cation (e.g., insulin and oral hypoglycemics) dosing and timing.

Employing similar individualized prediction of nutritional ef-

fects on disease development and progression may also be

valuable in rationally designing nutritional interventions in a vari-

ety of inflammatory, metabolic, and neoplastic multi-factorial

disorders. More broadly, accurate personalized predictions of

nutritional effects in these scenarios may be of great practical

value, as they will integrate nutritional modifications more exten-

sively into the clinical decision-making scheme.

EXPERIMENTAL PROCEDURES

Human Cohorts

Approved by Tel Aviv Sourasky Medical Center Institutional Review Board

(IRB), approval numbers TLV-0658-12, TLV-0050-13 and TLV-0522-10; Kfar

Shaul Hospital IRB, approval number 0-73; andWeizmann Institute of Science

Bioethics and Embryonic Stem Cell Research oversight committee. Reported

to http://clinicaltrials.gov/, NCT: NCT01892956.

Study Design

Study participants were healthy individuals aged 18–70 able to provide

informed consent and operate a glucometer. Prior to the study, participants

filled medical, lifestyle, and nutritional questionnaires. At connection week

start, anthropometric, blood pressure and heart-rate measurements were

taken by a CRA or a certified nurse, as well as a blood test. Glucose was

measured for 7 days using the iPro2 CGM with Enlite sensors (Medtronic,

MN, USA), independently calibrated with the Contour BGM (Bayer AG, Lever-

kusen, Germany) as required. During that week participants were instructed to

record all daily activities, including standardized and real-life meals, in real-

time using their smartphones; meals were recorded with exact components

and weights. Full inclusion and exclusion criteria are detailed in Supplemental

Experimental Procedures. Questionnaires used can be found in Data S1.

Standardized Meals

Participants were given standardizedmeals (glucose, bread, bread and butter,

bread and chocolate, and fructose), calculated to have 50 g of available carbo-

hydrates. Participants were instructed to consume these meals immediately

after their night fast, not to modify the meal, and to refrain from eating or per-

forming strenuous physical activity before, and for 2 hr following consumption.

Stool Sample Collection

Participants sampled their stool following detailed printed instructions. Sam-

pling was done using a swab (n = 776) or both a swab and an OMNIgene-

GUT (OMR-200; DNA Genotek) stool collection kit (n = 413, relative abun-

dances (RA) for the same person are highly correlated (R = 0.99 p < 10�10) be-

tween swabs and OMNIIgene-GUT collection methods). Collected samples

were immediately stored in a home freezer (�20�C), and transferred in a pro-

vided cooler to our facilities where it was stored at �80�C (�20�C for OMNII-

gene-GUT kits) until DNA extraction. All samples were taken within 3 days of

connection week start.

Genomic DNA Extraction and Filtering

Genomic DNA was purified using PowerMag Soil DNA isolation kit (MoBio)

optimized for Tecan automated platform. For shotgun sequencing, 100 ng of

purified DNAwas sheared with a Covaris E220X sonicator. Illumina compatible

libraries were prepared as described (Suez et al., 2014). For 16S rRNA

sequencing, PCR amplification of the V3/4 region using the 515F/806R 16S
e ‘‘good’’ diet interventions (see panel C), shown is the average and standard

iet week relative to days 0–3 of the ‘‘good’’ week. Same for the ‘‘bad’’ diet week

show fold changes (log) in individual participants.
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rRNA gene primers was performed followed by 500 bp paired-end sequencing

(Illumina MiSeq).

Microbial Analysis

We used USearch8.0 (Edgar, 2013) to obtain RA from 16S rRNA reads. We

filtered metagenomic reads containing Illumina adapters, filtered low quality

reads and trimmed low quality read edges.We detected host DNA bymapping

with GEM (Marco-Sola et al., 2012) to the Human genome with inclusive pa-

rameters, and removed those reads. We obtained RA from metagenomic

sequencing via MetaPhlAn2 (Truong et al., 2015) with default parameters.

We assigned length-normalized RA of genes, obtained by similar mapping

with GEM to the reference catalog of (Li et al., 2014), to KEGG Orthology

(KO) entries (Kanehisa and Goto, 2000), and these were then normalized to a

sum of 1. We calculated RA of KEGG modules and pathways by summation.

We considered only samples with >10K reads of 16S rRNA, and >10 M meta-

genomic reads (>1.5 M for daily samples in diet intervention cohort).

Associating PPGRs with Risk Factors and Microbiome Profile

We calculated the median PPGR to standardized meals for each participant

who consumed at least four of the standardized meals and correlated it with

clinical parameters (Pearson).We also calculated themean PPGR of replicates

of each standardizedmeal (if performed) and correlated (Pearson) these values

with (a) blood tests; (b) anthropometric measurements; (c) 16S rRNA RA at the

species to phylum levels; (d) MetaPhlAn tag-level RA; and (e) RA of KEGG

genes. We capped RA at a minimum of 1e-4 (16S rRNA), 1e-5 (MetaPhlAn)

and 2e-7 (KEGG gene). For 16S rRNA analysis we removed taxa present in

less than20%ofparticipants. CorrelationsonRAswereperformed in logspace.

Enrichment analysis of higher phylogenetic levels (d) and KEGG pathways

and modules (e) was performed by Mann-Whitney U-test between �log(p val-

ue)*sign(R) of above correlations (d, e) of tags or genes contained in the higher

order groups and�log(p value)*sign(R) of the correlations of the rest of the tags

or genes.

FDR Correction

FDR was employed at the rate of 0.15, per tested variable (e.g., glucose stan-

dardized PPGR) per association test (e.g., with blood tests) for analyses in Fig-

ure 2G and Figure S4; per phylogenetic level in Figure 6 and Figure S7; and on

the entire association matrix in Figure 4G.

Meal Preprocessing

We merged meals logged less than 30 min apart and removed meals logged

within 90 min of other meals. We also removed very small (<15 g and <70 Cal-

ories) meals and meals with very large (>1 kg) components, meals with incom-

plete logging and meals consumed at the first and last 12 hr of the connection

week.

PPGR Predictor

Microbiome derived features were selected according to number of estimators

using them in an additional predictor run on training data. For detailed feature

list see Supplemental Experimental Procedures. We predicted PPGRs using

stochastic gradient boosting regression, such that 80% of the samples and

40% of the features were randomly sampled for each estimator. The depth

of the tree at each estimator was not limited, but leaves were restricted to

have at least 60 instances (meals). We used 4000 estimators with a learning

rate of 0.002.

Microbiome Changes during Dietary Intervention

Wedetermined the significantly changing taxa of each participant by aZ test of

fold-change in RA between the beginning and end of each intervention week

against a null hypothesis of no change and standard deviation calculated

from at least 25-fold changes across the first profiling week (no intervention)

of corresponding taxa from all participants with similar initial RA. We checked

whether a change was consistent across the cohort for each taxa by perform-

ing Mann-Whitney U-test between the Z statistics of the ‘‘good’’ intervention

weeks and those of the ‘‘bad’’ intervention weeks across all participants.

A detailed description of methods used in this paper can be found in the

Supplemental Experimental Procedures.
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